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“It's tough to make predictions, 
especially about the future.” 

-Yogi Berra
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Emerging (and re-emerging) infectious diseases

3

Newly emerging and newly recognized infections
The classification of EIs as ‘newly emerging’, ‘re-emerging/resurging’
or ‘deliberately emerging’ is useful because the underlying causes of
emergence and the optimal prevention or control responses fre-
quently differ between the groups. Newly emerging infections are
those that have not previously been recognized in man. Many
diverse factors contribute to their emergences (see Box 1); these
include microbial genetic mutation and viral genetic recombination
or reassortment, changes in populations of reservoir hosts or inter-
mediate insect vectors, microbial switching from animal to human
hosts, human behavioural changes (notably human movement and
urbanization), and environmental factors. These numerous micro-
bial, host and environmental factors interact to create opportunities
for infectious agents to evolve into new ecological niches, reach and
adapt to new hosts, and spread more easily between them.

The AIDS model
Any discussion of recent EIs must begin with the human immuno-
deficiency virus (HIV) that causes AIDS. HIV has so far infected
more than 60 million people worldwide33. Before jumping to humans
an estimated 60–70 years ago34, perhaps as a consequence of the con-
sumption of ‘bush meat’ from non-human primates, HIV-1 and
HIV-2 had ample opportunity to evolve in hosts that were genetically
similar to man (the chimpanzee, Pan troglodytes, and the sooty
mangabey, Cercocebus atys). But HIV/AIDS might never have
emerged had it not been for disruptions in the economic and social
infrastructure in post-colonial sub-Saharan Africa. Increased travel,
the movement of rural populations to large cities, urban poverty and
a weakening of family structure all promoted sexual practices, such as
promiscuity and prostitution, that facilitate HIV transmission34–37.
Such complex interactions between infectious agents, hosts and the
environment are not unique to the epidemiology of HIV/AIDS. The
examples cited below further illustrate how changes in population
density, human movements and the environment interact to create
ecological niches that facilitate microbial or viral adaptation.

Dead-end transmission of zoonotic and vector-borne diseases
Some infectious agents that have adapted to non-human hosts can
jump to humans but, unlike HIV, are not generally transmitted from
person to person, achieving only ‘dead end’ transmission. Infections
in animals that are transmitted to humans (zoonoses), and those
transmitted from one vertebrate to another by an arthropod vector
(vector-borne diseases), have repeatedly been identified as ranking
among the most important EIs25,26. Examples include the arenavirus
haemorrhagic fevers (Argentine, Bolivian, Venezuelan and Lassa
haemorrhagic fevers) and hantavirus pulmonary syndrome (HPS).
Viruses in these groups have co-evolved with specific rodent species
whose contact with humans has increased as a result of modern
environmental and human behavioural factors. Farming, keeping
domestic pets, hunting and camping, deforestation and other types
of habitat destruction all create new opportunities for such infectious
agents to invade human hosts25–31. The first epidemic of HPS, detected
in the southwestern region of the United States in 1993 (ref. 38),
resulted from population booms of the deer mouse Peromyscus
maniculatis, in turn caused by climate-related and recurrent prolif-
eration of rodent food sources. Increased rodent populations and
eventual shortages of food drove expanded deer mouse populations
into homes, exposing people to virus-containing droppings. The
1998–1999 Malaysian Nipah virus epidemic39 further illustrates the
influence of human behaviours and environmental perturbations
on newly emerging human infections. Pigs crammed together in
pens located in or near orchards attracted fruit bats whose normal
habitats had been destroyed by deforestation and whose droppings
contained the then-unknown paramyxovirus. Virus aerosolization
caused infection of pigs, with overcrowding leading to explosive
transmission rates and ultimately to infections in pig handlers.

Variant Creutzfeldt–Jakob disease (vCJD) is another example of a
zoonotic disease emerging in humans. vCJD is caused by the human-
adapted form of the prion associated with the emerging epizootic
(large-scale animal outbreak) of bovine spongiform encephalopathy
(BSE)40, commonly known as mad cow disease. The ongoing BSE
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Figure 1 Global examples of emerging and re-emerging infectious diseases, some of which are discussed in the main text. Red represents newly emerging diseases; 
blue, re-emerging/resurging diseases; black, a ‘deliberately emerging’ disease. Adapted, with permission, from ref. 23.

1. Fauci  29/6/04  2:04 pm  Page 3

©  2004 Nature  Publishing Group

Figure: Morens et al. (2004, Nature)



4



5

D), Thus, even when the variance is high,
epidemic spread is highly likely when R ex-
ceeds !2 and there are as few as 20 intro-
ductions of the infection into a susceptible
population. This finding suggests that, if re-
peated introductions of SARS cases into a
population failed to result in ongoing trans-
mission, it would be an indication that control
measures have effectively reduced R to levels
near, though not necessarily below, 1.

Our approach to estimating R is robust to
the possibility that individuals may be
asymptomatically infected with SARS and
that such individuals may transmit infection.
It is currently unknown whether individuals
can be infected with SARS but remain
asymptomatic and, if so, whether such
asymptomatic persons can transmit infection.
There is at present no direct evidence of
transmission from an asymptomatic person.
Indirect evidence that it may occur rarely in
normal settings includes a case report of a
transmission from an individual whose only
symptom was mild fever but who was iden-
tified as a SARS case in retrospect (13).
Extensive contact tracing in Hong Kong has
failed to identify a known symptomatic
SARS contact for 8.6% of reported cases
(14). We considered the possibility that
asymptomatic cases exist and constitute a
fixed proportion a of all cases and that these
asymptomatic cases transmit at rate kba. In
this case, the estimated value of R, now given
by R " [kb(1 – a) # kbaa]xD, is unchanged
(15). If asymptomatically infected persons
become immune to subsequent infection
without suffering from SARS, this will ulti-
mately reduce transmission by reducing the
susceptible population. However, if asymp-
tomatic persons contribute substantially to
transmission but are not readily identified as
SARS cases, control measures will be ham-
pered because they depend on the ready iden-
tification of people who have been exposed to
potentially infectious cases.

Measures to contain SARS have taken two
major forms: isolation of symptomatic cases to
prevent further transmission and quarantine and
close observation of asymptomatic contacts of
cases so that they may be isolated as soon
as they show possible signs of the disease. To
assess the impact of such measures, we con-
structed a simple, deterministic, compartmental
model for SARS transmission, in which a
standard susceptible–exposed (noninfectious)–
infectious–recovered (SEIR) structure (10) was
modified to accommodate quarantine and iso-
lation (Fig. 5). The infection process was mod-
eled in a population (N0) of 10 million individ-
uals, consistent with the size of a large urban
center. We assumed that an infectious individ-
ual has a mean of k potentially infectious con-
tacts per day, that susceptible contacts are in-
fected with probability b, and that the number
of contacts was independent of population den-

sity. We further assumed that individuals are
isolated at a fixed rate per day after becoming
infectious and that isolated individuals are no
longer at risk of transmitting infection. Infected
individuals become noninfectious by either dy-
ing, recovering, or being isolated, and the mean
duration of infectiousness is D days. Quarantine
is modeled as follows: Of the bkS/N0 suscepti-
ble contacts infected by an infectious individual
each day, a proportion, q, will be sent into
quarantine before they themselves become in-
fectious and will remain there until they do

become infectious, at which point they are
isolated before they can transmit to others;
thus, quarantine is assumed to be 100% ef-
fective for those contacts who are found be-
fore they become infectious. Additionally, a
proportion, q, of an infectious individual’s
daily susceptible contacts who will not go on
to develop disease are also quarantined for 10
days, temporarily removing them from the
susceptible pool (16, 17).

In this basic model, the impact of such
control measures is almost completely captured
by a simple expression for R in the presence of
interventions: Rint " R(1 – q)Dint/D, where Dint

is the mean duration of infectiousness in the
presence of interventions (Fig. 6A). To reduce
R from a value of, for example, 3 to below 1,
the combined effect of reducing the infectious
period of detected cases and quarantining their
contacts (who will then presumably be isolated

Table 1. 90% credible intervals for the value of R
from stochastic simulations for four target values.
Technical details are given in (11).

90% credible
interval

1358 cases at day 63 (1.4, 4.5)
425 cases at day 41 (1.5, 7.7)
7919 cases at day 185 (1.1, 1.5)
15,000 cases at day 185 (1.1, 1.5)

Fig. 2. Estimated values of the reproductive
number for SARS in the absence of specific
control measures for a range of serial intervals
from 4 to 15 days (SOM Text). Figure assumes
f" 0.3 or 0.7; see fig. S1 for sensitivity analysis
for different values of f . Green represents es-
timated R values for Y(41 days) " 425; red,
Y(63 days) " 1358; magenta, Y(185 days) "
7919; and blue, Y(185 days) " 15,000.

Fig. 3. Marginal posterior
distribution of R under
the Bayesian procedure
(11) for Y(41 days) " 425
based on 1000 simula-
tions for each candidate
value of R. The most no-
table feature of the pos-
terior distribution is the
considerable right skew,
so that although the 90%
credible interval spans
(1.5, 7.7), the mode is
about 2.2 and the expect-
ed value is 3.5. Thus, the mode is somewhat lower and the mean somewhat higher than the range
obtained by the deterministic approach, which for a serial interval of 8.4 days is 2.2 to 2.6,
depending on the value of f used.

Fig. 4. The probability of
an outbreak of SARS in a
susceptible population for
a range of values of R, ap-
proximated by the proba-
bility of nonextinction of a
branching process (22) in
which the number of sec-
ondary cases is given by a
negative binomial distribu-
tion with a mean of R and
a variance-to-mean ratio
ranging from 1 (for which
the negative binomial re-
duces to the Poisson distri-
bution) to 20 [from left to
right: 1 (black), 2 (green), 4
(blue), 10 (magenta), 20
(red)] after the introduction of (A) a single infectious case, (B) 5 infectious cases, (C) 20 infectious cases,
and (D) 100 infectious cases.
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Outbreak analysis

• SARS (Lipsitch et al., 2003, 
Science) 

• H1N1 (Fraser et al., 2009, 
Science) 

• Ebola (WHO Ebola Response 
Team, 2014, N Engl J Med) 

• MERS (Kucharski & Althaus, 
2015, Euro Surveill)

(6) and assuming similar times from infection to
confirmation and from infection to death, we esti-
mated CFRs in the range of 0.3 to 0.6% from the
interval-censored case count model, based on con-
firmed and suspected deaths combined, or 0.03 to
0.05% for confirmed deaths only. Using the alter-
native, more pessimistic, country presence/absence
model, we estimatedCFRs of 0.9 to 1.8%based on
suspected and confirmed deaths, and 0.08 to
0.16% from the confirmed deaths alone. These
estimates have already changed somewhat as a
result of data available after 30 April, but we de-
liberately report the earlier analysis because it
formed part of the evidence base used by WHO
to move to phase 5.

Another source of information on severity
comes from the large outbreak of respiratory dis-
ease seen in the small, isolated community of La
Gloria in Veracruz province, one case of which
has been confirmed to have been caused by the
novel H1N1 strain. It is possible that other vi-
ruses were circulating at the same time as the
outbreak, but the overall attack rate is substan-
tially larger than would be expected for a sea-
sonal influenza outbreak. No fatalities among 616
cases have been attributed to infection during the
full period of surveillance of that outbreak (Fig.
3A), giving a 95% confidence interval (CI) of 0
to 0.60%.

Data on themagnitude of the current outbreak
in Mexico can also be used to estimate the trans-
missibility of the virus if the start date of the
outbreak is known or can be estimated. Epide-
miological investigations into the emergence of
the virus inMexico have focused on the La Gloria
outbreak, where the first case in that outbreak is
thought to have occurred around 15 February 2009
(Fig. 3A).

An alternative approach to estimating the start
date of the outbreak is to look at the diversity in
the genetic sequences of viral samples collected
from confirmed cases, assuming that diversity
accumulates according to amolecular clockmodel.
Twenty-three complete publicly available hemag-
glutinin (HA) gene sequences from cases not
linked in epidemiological clusters were analyzed
with a Bayesian coalescent method that assumes
exponential growth of the viral population (7).
This yielded an estimate of the time of most
recent common ancestor (TMRCA) of 12
January 2009 [95% credible interval (CrI): 3
November 2008 to 2 March 2009]. The genetic
model also gave an estimate of the doubling
time of the epidemic of 10 days (95% CrI: 4.5
to 37.5 days) (Fig. 2). Assuming exponential
growth, the TMRCA is a reasonable estimate
of the start of the outbreak, although it is for-
mally an upper bound due to incomplete sam-
pling of the epidemic and the effects of the
exponential model prior to distribution. These find-
ings from a population genetic analysis are con-
sistent with the epidemiological investigation of
both the start and magnitude of the current epi-
demic in Mexico. Figure 2 also shows a pre-
liminary version of this analysis based on the first

11 sequences, which gave similar estimates high-
lighting the power of these methods. [See (8) for
further sensitivity analysis and methods.]

The reproduction number, defined as the num-
ber of cases one case generates on average over
the course of their infectious period, is a key mea-
sure of transmissibility and can be estimated in a
number of ways from the data currently available.

First, by assuming exponential growth, the
growth rate of the epidemic (r) can be inferred
from estimates of the current cumulative number
of infections (Yf) and estimated start date and size
for the outbreak (t0 and Y0, respectively). The
basic reproduction number (R0) can be estimated
from the exponential growth rate if one also
assumes that the generation time distribution for

the new H1N1 strain is similar to that of other
strains of seasonal and pandemic viruses (9, 10)
[Table 1 and (8)]. Using the date of 15 February
as the first case of the La Gloria outbreak (8)
gives reproduction number estimates of between
1.31 and 1.42, depending on which variant of
the geographical backcalculation model is used.
Extending a more sophisticated Bayesian estima-
tion method (11) that allows for stochastic varia-
bility intrinsic to epidemic dynamics and parameter
uncertainty gave similar but slightly higher esti-
mates for R0 with wider ranges: posterior median =
1.40; 95% CrI: 1.15 to 1.90 (Fig. 1C).

Second, by assuming a prior distribution on
the generation time distribution informed by pre-
vious estimates of influenza, the Bayesian coa-
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B

C

D E

Fig. 1. (A). The number of passengers flying out of Mexico by actual destination and the number of
confirmed cases as reported on 30 April 2009. (B) The number of cases exported to country j as
reported on 30 April 2009 as a function of the estimated average number of foreign travelers in
Mexico from country j on any given day in March or April. Black circles: minimal number based on
one exposure per epidemiological cluster; filled red circles, total number of confirmed cases. (C)
Mean assumed generation time distribution (red) and 100 illustrative draws from the prior
distribution, and (D) corresponding posterior distribution of R0 estimates for a stochastic model of
an epidemic within Mexico with travelers infected at a rate proportional to the estimated density of
travelers per local resident. The two bar charts correspond to a 7-day delay between infection and
confirmation (blue) and no delay (orange) in cases among travelers. (E) Number of acute respiratory
infection cases per 100,000 inhabitants by state as reported on 5 May 2009 (1), demonstrating spatial
distribution of disease within Mexico.
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Figure S7: Estimates of the instantaneous reproduction number ( tR ) over sliding 4-week windows, by country and by week of symptom onset based 
on the detailed case dataset. Estimates are shown at the windows mid-points. The top row is based on confirmed and probable cases, the bottom row 
is based on confirmed, probable and suspected cases. The serial interval is assumed to have a mean of 15.3 days. In each country, tR  is estimated from 
the day following the onset of symptoms of the first confirmed/probable case in that country. For Sierra Leone, estimates start the day following the 
onset of symptoms of the second confirmed/probable case. Indeed, the first and second cases have symptoms onset 23 days apart from each other, 
and are thus not likely to be epidemiologically linked. 
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For given values of R0 and k, the probability that an 
index case generates a transmission cluster of size j or 
greater is:

Assuming N introductions of infections into the human 
population, the probability that at least one cluster of 
size j or greater occurs is 1 – (1 – pj)N. All analyses were 
done in the R software environment for statistical com-
puting [10].

Findings*
Using available cluster data, we jointly estimated R0 
and the dispersion parameter k for MERS-CoV (Figure 1). 
Analysis of severe acute respiratory syndrome (SARS) 
coronavirus transmission during the early stages of the 
outbreak in Singapore suggested k = 0.16 (90% confi-
dence interval (CI): 0.11–0.64) [3] (the study cited 90% 
CI owing to the paucity of available data). Our estimate 
for MERS-CoV is similar, with k = 0.26 (90% CI: 0.11–
0.87, 95% CI: 0.09–1.24). As it is not always clear from 
case reports which cases are epidemiologically linked, 
we also estimated k using data from two other stud-
ies of clusters [6,7]. These data included fewer clusters 

and were less conclusive regarding the amount of over-
dispersion, with k = 0.61 (95% CI: 0.16–∞) [7] and k = 
2.94 (95% CI: 0.23–∞) [6].

Our estimate for R0 was 0.47 (95% CI: 0.29–0.80). 
The maximum likelihood estimate (0.47),  which is 
independent of k [8], agrees with previous work [5-7]. 
However unlike earlier studies, which assumed the 
distribution of secondary cases to be either geometric 
(i.e. k = 1) [5,7] or Poisson (k = ∞) [6], our upper 95% 
CI is larger. This is because allowing for potential over-
dispersion increases the uncertainty surrounding the 
estimate of R0 (Figure 1).

There is an intricate relationship between the basic 
reproduction number, R0, the dispersion parameter, k, 
and the probability of observing a large transmission 
cluster (Figure 2A). For a given value of k, increasing R0 
also increases the probability of observing large clus-
ters. If R0 is low, a higher variation in the number of sec-
ondary cases (i.e. smaller k) increases the probability 
of observing large transmission clusters owing to the 
potential for superspreading. The effect of k is reversed 
for values of R0 near one, where a smaller k reduces the 
probability of observing large clusters. This is because 
a higher variation in the number of secondary cases 
increases the probability that an infected index case 
does not generate further cases [3]. Interestingly, the 

Figure 1 
Joint estimates of basic reproduction number, R0, and 
dispersion parameter, k, for MERS-CoV*

MERS-CoV: Middle East respiratory syndrome coronavirus; SARS: 
severe acute respiratory syndrome.
Estimates are based on reported cluster size distributions 
until 31 August 2013 (orange), 8 August 2013 (blue) and 21 June 
2013 (green) reported by Poletto et al. [5], Cauchemez et al. [7] 
and Breban et al. [6], respectively. Points indicate maximum 
likelihood estimates and lines show 90% (dashed) and 95% (solid) 
confidence intervals. The red dashed line indicates the dispersion 
parameter k = 0.16 that was reported for SARS coronavirus [3].
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Table 
Data sources used for MERS clustersa of a given size 
(including index case), based on laboratory-confirmed 
MERS case reports worldwideb*

Cluster size
Number of MERS clusters of a given size

Breban et al. 
[6]c

Cauchemez 
et al. [7]

Poletto et al. 
[5]c

1 11 27 42
2 2 2 7
3 3 4 2
4 1 3 –
5 2 2 2
7 – 1 – 
10 – – 1
13 – 1 –
22 – – 1
24 1 – –
26 – 1 – 

MERS: Middle East respiratory syndrome.
Dashes indicate that there were no such reports.
a  Cases with known epidemiological links were classified as a 

cluster. Single index cases were considered as independent 
clusters of size one.

b We analysed data on MERS cluster sizes for cases reported up 
to 31 August 2013 [5]. For comparison, we also considered data 
from two other reports, up to 21 June 2013 [6] and 8 August 2013 
[7].

c  These studies listed more than one set of possible clusters, 
depending on how cases were interpreted. We therefore 
considered data from the most pessimistic scenario in each 
study, which included the probable cases in the Jordan outbreak 
in April 2012.



Global hotspots of emerging zoonotic diseases
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decades, and are a significantly growing proportion of all EIDs
combined4. We updated the EID database from4, and employed a
new modeling framework (boosted regression trees, BRT) to
capture high-dimensional interactions and generate response
functions for individual variables. We selected a refined set of
spatial predictors for their relevance to a priori hypotheses on
plausible mechanisms underlying zoonotic EID emergence,
including proxies for human activity, environmental factors,
and the zoonotic pathogen pool from which novel diseases
could emerge, all key features of conceptual models of zoonotic
spillover7–11. We used an improved data set of mammal species
distributions12, and included numerous data sets on measures of
land use, land-use change and land cover. Furthermore, all data
sets with sufficient temporal coverage were matched to events in
the EID database by decade, such that covariates more accurately
reflect the prevailing conditions at the time of disease emergence.
We also constructed a novel proxy of reporting effort to match
the spatial resolution of the other predictors, where previous
studies have relied on coarse, country-level measures, and
compared EID risk predictions with and without corrections for
reporting effort. Finally, we accounted for spatial uncertainty in
EID event data by random resampling to explicitly take into

account the difficulties of accurately geocoding EID events.
Our results suggest that EID events are best predicted by
the distribution of tropical forested regions, higher mammalian
species richness, and variables relating to shifts in agricultural
land use; and appear to occur more often in tropical regions.
We identify specific areas and approaches where a research focus
may identify more specific trends not apparent in our data.

Results
Variables in boosted regression tree models. After factoring out
reporting effort (in the weighted model), evergreen broadleaf
trees (median 7.6% of the model’s predictive power), human
population density (6.9%), Global Environmental Stratification
(climate) (5.9%), and mammal species richness (an aspect of
biodiversity) (5.6%) had the largest relative influence over the
distribution of EID events (Fig. 1). Across 1000 iterations of
the model, no variables consistently emerged as much stronger
predictors than others but an average ranking of predictor
importance could be derived. Of the top predictors, evergreen
broadleaf trees (representing tropical rainforests) exhibited an
overall positive trend, human population density an overall
negative trend, the Global Environmental Stratification (climate)

Low
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Low
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b

Fig. 3 Heat maps of predicted relative risk distribution of zoonotic EID events. a shows the predicted distribution of new events being observed (weighted
model output with current reporting effort); b shows the estimated risk of event locations after factoring out reporting bias (weighted model output
reweighted by population). See Fig. 4 for raw weighted model output. Maps were created using standard deviation scaling, with the color palette scaled to
2.5 s.d. above and below the mean

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00923-8

4 NATURE COMMUNICATIONS | 8: �1124� |DOI: 10.1038/s41467-017-00923-8 |www.nature.com/naturecommunications

an idiosyncratic trend towards warmer and wetter (i.e., more
tropical) climates, and mammal species richness showed
an idiosyncratic trend, with higher risk values at lower and
particularly higher richness values (Fig. 2). After mammal species
richness, three variables involving agricultural practices followed
in importance: cultivated/managed vegetation (5.6%), pasture
change (5.2%), and areas dedicated to pasture (5.1%). In the
unweighted model, which did not account for reporting effort
(Supplementary Note 3), urban/built-up land was by far the
strongest predictor of observed events, explaining a median of
30.6% of the model’s variation and exhibiting a distinct positive
trend.

Global distribution of EID risk index. Relative to the observed
risk index for EID events, the model’s estimated risk index
correcting for reporting bias (Fig. 3) is more concentrated in
tropical regions. Areas of higher suitability for EID occurrence are
fairly evenly distributed across the continents, with no major
land mass free from areas predicted to be suitable for EIDs. In
particular, areas of high population outside the tropics, such as
cities in Europe, the United States, Asia and Latin America
remain among areas at the high end of the risk index. Tropical
regions in North America, Asia, Central Africa, and regions of
South America have more extensive areas of predicted EID
occurrence.

Model performance and validation statistics. Our model
validation statistics were computed both for the weighted model
—with a background, or absence, sample weighted by reporting
effort, effectively computing statistics on the residuals of that
variable—and our unweighted model, using a background sample
uniform across land area. The weighted bootstrap model reported
a median of 31.6% of deviance explained across the 1000 replicate
models (empirical 90% confidence interval (CI) 15.9% to 50.5%),
whereas the unweighted model explained a median 50.2% of
deviance (empirical 90% CI 35.8% to 67.2%). Our weighted
model’s cross-validation statistics, computed over 100 runs of
10-fold cross-validation, varied depending on the weighting of the
null validation sample. With validation absences weighted by
reporting effort, the weighted model had a median AUC of 0.64,

with an empirical 90% confidence interval ranging from 0.54 to
0.69 (out of possible values between 0 and 1, with 0.5 indicating
performance no better than random). The median True Skill
Statistic (TSS) was 0.23 with an empirical 90% CI of 0.14 to 0.33
(out of a range of −1 to 1). These indicate low to moderate
predictive performance13–15. Evaluated against an unweighted
null, the weighted model had a median AUC of 0.78 (90% CI
(0.75, 0.81)) and a median TSS of 0.43 (90% CI (0.37, 0.50)).
The unweighted model evaluated against to an unweighted null,
had a median AUC of 0.77 (90% CI (0.73, 0.81)) and a median
TSS of 0.44 (90% CI (0.37, 0.50)).

Discussion
We developed a spatial model to describe the global spatial
patterns of zoonotic EIDs. Our main model (the “weighted
model” factored out clear effects of reporting effort, which
otherwise biases our ability to interpret EID event observations. It
ranked risk factors according to their predictive power, capturing
both their main effects and potential interactions with other
variables, and we derived the directionality and shape of their
relationships to EID events for graphical interpretation. Our
results suggest that the risk of disease emergence is elevated
in tropical forest regions, high in mammal biodiversity,
and experiencing anthropogenic land use changes related to
agricultural practices16–18.

The link between mammal biodiversity and zoonotic disease
emergence has been identified previously4 and hypothesized
widely8, 19. Areas with tropical forest and high mammalian
biodiversity were elevated on our EID risk index (henceforth
“EID risk”), although the uncertainty of the estimates was high.
It may be that these variables represent the same mechanism,
as tropical forests are generally areas of high biodiversity20, and
the apparent association may be attenuated by the presence of
both in the model. This trend is consistent with existing
hypotheses, which suggest greater host biodiversity, increases
the “depth” of the pathogen pool from which novel pathogens
may emerge, which in turn increases the potential for novel
zoonotic pathogens to emerge21. There is a large literature on
the relationship between biodiversity and infectious disease
risk in people, with some studies suggesting that high host

0.3
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0.7

Event probability
(relative to
reporting effort)

Fig. 4 Heat map of weighted model response, i.e., EID risk relative to reporting effort. Value indicates the binomial probability that a grid cell sampled at
that location will contain an EID event as opposed to a background sample, when drawing equal numbers of absence and background samples weighted by
reporting effort (see Methods section). This layer was weighted by reporting effort to produce the “observed” EID risk index map (Fig. 3a) and by
population to produce the risk index map with bias factored out (Fig. 3b)
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Early January 2020

On 29 December 2019, the first 4 cases reported were identified by local hospitals 
using a surveillance mechanism for “pneumonia of unknown etiology” that was 
established in the wake of the 2003 severe acute respiratory syndrome (SARS) 
outbreak with the aim of allowing timely identification of novel pathogens.



1. What are the transmission characteristics (R0 and superspreading)? 

2. What is the severity of the disease (infection fatality ratio)?

Key questions for early outbreak response

8
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Early publications on SARS-CoV-2 transmission
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BACKGROUND
The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) oc-
curred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We 
analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemio-
logic characteristics of NCIP.

METHODS
We collected information on demographic characteristics, exposure history, and 
illness timelines of laboratory-confirmed cases of NCIP that had been reported by 
January 22, 2020. We described characteristics of the cases and estimated the key 
epidemiologic time-delay distributions. In the early period of exponential growth, we 
estimated the epidemic doubling time and the basic reproductive number.

RESULTS
Among the first 425 patients with confirmed NCIP, the median age was 59 years 
and 56% were male. The majority of cases (55%) with onset before January 1, 2020, 
were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the 
subsequent cases. The mean incubation period was 5.2 days (95% confidence inter-
val [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its 
early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval 
of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 
2.2 (95% CI, 1.4 to 3.9).

CONCLUSIONS
On the basis of this information, there is evidence that human-to-human transmission 
has occurred among close contacts since the middle of December 2019. Considerable 
efforts to reduce transmission will be required to control outbreaks if similar dy-
namics apply elsewhere. Measures to prevent or reduce transmission should be imple-
mented in populations at risk. (Funded by the Ministry of Science and Technology of 
China and others.)

A BS TR AC T

Early Transmission Dynamics in Wuhan, China, 
of Novel Coronavirus–Infected Pneumonia
Qun Li, M.Med., Xuhua Guan, Ph.D., Peng Wu, Ph.D., Xiaoye Wang, M.P.H., 

Lei Zhou, M.Med., Yeqing Tong, Ph.D., Ruiqi Ren, M.Med., 
Kathy S.M. Leung, Ph.D., Eric H.Y. Lau, Ph.D., Jessica Y. Wong, Ph.D., 

Xuesen Xing, Ph.D., Nijuan Xiang, M.Med., Yang Wu, M.Sc., Chao Li, M.P.H., 
Qi Chen, M.Sc., Dan Li, M.P.H., Tian Liu, B.Med., Jing Zhao, M.Sc., 

Man Liu, M.Sc., Wenxiao Tu, M.Med., Chuding Chen, M.Sc., Lianmei Jin, M.Med., 
Rui Yang, M.Med., Qi Wang, M.P.H., Suhua Zhou, M.Med., Rui Wang, M.D., 

Hui Liu, M.Med., Yingbo Luo, M.Sc., Yuan Liu, M.Med., Ge Shao, B.Med., 
Huan Li, M.P.H., Zhongfa Tao, M.P.H., Yang Yang, M.Med., 

Zhiqiang Deng, M.Med., Boxi Liu, M.P.H., Zhitao Ma, M.Med., 
Yanping Zhang, M.Med., Guoqing Shi, M.P.H., Tommy T.Y. Lam, Ph.D., 
Joseph T. Wu, Ph.D., George F. Gao, D.Phil., Benjamin J. Cowling, Ph.D., 

Bo Yang, M.Sc., Gabriel M. Leung, M.D., and Zijian Feng, M.Med.  

Original Article

The New England Journal of Medicine 
Downloaded from nejm.org at UNIVERSITAETSBIBLIOTHEK BERN on January 30, 2020. For personal use only. No other uses without permission. 

 Copyright © 2020 Massachusetts Medical Society. All rights reserved. 

29 January 2020

1www.eurosurveillance.org

Rapid communication

Pattern of early human-to-human transmission of 
Wuhan 2019 novel coronavirus (2019-nCoV), December 
2019 to January 2020

Julien Riou1 , Christian L. Althaus1

1. Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
Correspondence: Julien Riou (julien.riou@ispm.unibe.ch)

Citation style for this article: 
Riou Julien , Althaus Christian L. . Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. 
Euro Surveill. 2020;25(4):pii=2000058. https://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058 

Article submitted on 24 Jan 2020 / accepted on 30 Jan 2020 / published on 30 Jan 2020

Since December 2019, China has been experiencing 
a large outbreak of a novel coronavirus (2019-nCoV) 
which can cause respiratory disease and severe pneu-
monia. We estimated the basic reproduction num-
ber R0 of 2019-nCoV to be around 2.2 (90% high density 
interval: 1.4–3.8), indicating the potential for sus-
tained human-to-human transmission. Transmission 
characteristics appear to be of similar magnitude to 
severe acute respiratory syndrome-related coronavi-
rus (SARS-CoV) and pandemic influenza, indicating a 
risk of global spread.

On 31 December 2019, the World Health Organization 
(WHO) was alerted about a cluster of pneumonia of 
unknown aetiology in the city of Wuhan, China [1,2]. 
Only a few days later, Chinese authorities identified 
and characterised a novel coronavirus (2019-nCoV) 
as the causative agent of the outbreak [3]. The out-
break appears to have started from a single or multiple 
zoonotic transmission events at a wet market in Wuhan 
where game animals and meat were sold [4] and has 
resulted in 5,997 confirmed cases in China and 68 con-
firmed cases in several other countries by 29 January 
2020 [5]. Based on the number of exported cases iden-
tified in other countries, the actual size of the epidemic 
in Wuhan has been estimated to be much larger [6]. At 
this early stage of the outbreak, it is important to gain 
understanding of the transmission pattern and the 
potential for sustained human-to-human transmission 
of 2019-nCoV. Information on the transmission char-
acteristics will help coordinate current screening and 
containment strategies, support decision making on 
whether the outbreak constitutes a public health emer-
gency of international concern (PHEIC), and is key for 
anticipating the risk of pandemic spread of 2019-nCoV. 
In order to better understand the early transmission 
pattern of 2019-nCoV, we performed stochastic simula-
tions of early outbreak trajectories that are consistent 
with the epidemiological findings to date.
 

Epidemic parameters
Two key properties will determine further spread 
of 2019-nCoV. Firstly, the basic reproduction num-
ber  R0  describes the average number of secondary 
cases generated by an infectious index case in a fully 
susceptible population, as was the case during the 
early phase of the outbreak. If R0  is above the critical 
threshold of 1, continuous human-to-human transmis-
sion with sustained transmission chains will occur. 
Secondly, the individual variation in the number of 
secondary cases provides further information about 
the expected outbreak dynamics and the potential for 
superspreading events [7-9]. If the dispersion of the 
number of secondary cases is high, a small number of 
cases may be responsible for a disproportionate num-
ber of secondary cases, while a large number of cases 
will not transmit the pathogen at all. While super-
spreading always remain a rare event, it can result in 
a large and explosive transmission event and have a 
lot of impact on the course of an epidemic. Conversely, 
low dispersion would lead to a steadier growth of the 
epidemic, with more homogeneity in the number of 
secondary cases per index case. This has important 
implications for control efforts.

Simulating early outbreak trajectories
In a first step, we initialised simulations with one index 
case. For each primary case, we generated second-
ary cases according to a negative-binomial offspring 
distribution with mean  R0  and dispersion  k  [7,8]. The 
dispersion parameter k quantifies the variability in the 
number of secondary cases, and can be interpreted 
as a measure of the impact of superspreading events 
(the lower the value of  k, the higher the impact of 
superspreading). The generation time interval  D  was 
assumed to be gamma-distributed with a shape 
parameter of 2, and a mean that varied between 7 and 
14 days. We explored a wide range of parameter com-
binations (Table) and ran 1,000 stochastic simulations 
for each individual combination. This corresponds to 
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Nowcasting and forecasting the potential domestic and 
international spread of the 2019-nCoV outbreak originating 
in Wuhan, China: a modelling study
Joseph T Wu*, Kathy Leung*, Gabriel M Leung

Summary
Background Since Dec 31, 2019, the Chinese city of Wuhan has reported an outbreak of atypical pneumonia caused by 
the 2019 novel coronavirus (2019-nCoV). Cases have been exported to other Chinese cities, as well as internationally, 
threatening to trigger a global outbreak. Here, we provide an estimate of the size of the epidemic in Wuhan on the 
basis of the number of cases exported from Wuhan to cities outside mainland China and forecast the extent of the 
domestic and global public health risks of epidemics, accounting for social and non-pharmaceutical prevention 
interventions.

Methods We used data from Dec 31, 2019, to Jan 28, 2020, on the number of cases exported from Wuhan 
internationally (known days of symptom onset from Dec 25, 2019, to Jan 19, 2020) to infer the number of infections 
in Wuhan from Dec 1, 2019, to Jan 25, 2020. Cases exported domestically were then estimated. We forecasted the 
national and global spread of 2019-nCoV, accounting for the effect of the metropolitan-wide quarantine of Wuhan 
and surrounding cities, which began Jan 23–24, 2020. We used data on monthly flight bookings from the Official 
Aviation Guide and data on human mobility across more than 300 prefecture-level cities in mainland China from 
the Tencent database. Data on confirmed cases were obtained from the reports published by the Chinese Center 
for Disease Control and Prevention. Serial interval estimates were based on previous studies of severe acute 
respiratory syndrome coronavirus (SARS-CoV). A susceptible-exposed-infectious-recovered metapopulation model 
was used to simulate the epidemics across all major cities in China. The basic reproductive number was estimated 
using Markov Chain Monte Carlo methods and presented using the resulting posterior mean and 95% credibile 
interval (CrI).

Findings In our baseline scenario, we estimated that the basic reproductive number for 2019-nCoV was 2·68 
(95% CrI 2·47–2·86) and that 75 815 individuals (95% CrI 37 304–130 330) have been infected in Wuhan as of 
Jan 25, 2020. The epidemic doubling time was 6·4 days (95% CrI 5·8–7·1). We estimated that in the baseline 
scenario, Chongqing, Beijing, Shanghai, Guangzhou, and Shenzhen had imported 461 (95% CrI 227–805), 
113 (57–193), 98 (49–168), 111 (56–191), and 80 (40–139) infections from Wuhan, respectively. If the transmissibility 
of 2019-nCoV were similar everywhere domestically and over time, we inferred that epidemics are already 
growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 
1–2 weeks.

Interpretation Given that 2019-nCoV is no longer contained within Wuhan, other major Chinese cities are probably 
sustaining localised outbreaks. Large cities overseas with close transport links to China could also become outbreak 
epicentres, unless substantial public health interventions at both the population and personal levels are implemented 
immediately. Independent self-sustaining outbreaks in major cities globally could become inevitable because of 
substantial exportation of presymptomatic cases and in the absence of large-scale public health interventions. 
Preparedness plans and mitigation interventions should be readied for quick deployment globally.
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Introduction
Wuhan, the capital of Hubei province in China, is 
investigating an outbreak of atypical pneumonia caused 
by the zoonotic 2019 novel coronavirus (2019-nCoV). As 
of Jan 29, 2020 (1100 h Hong Kong time), there have 
been 5993 cases of 2019-nCoV infections confirmed in 
mainland China (figure 1), including 132 deaths. As of 
Jan 28, 2020 (1830 h Hong Kong time), there have been 

78 exported cases from Wuhan to areas outside mainland 
China (appendix p 2–4).

The National Health Commission of China has devel-
oped a case-definition system to facilitate the classification 
of patients (panel). To mitigate the spread of the virus, the 
Chinese Government has pro gressively implemented 
metro politan-wide quarantine of Wuhan and several 
nearby cities since Jan 23–24, 2020. Numerous domestic 

See Online for appendix

31 January 2020

Conclusions: Basic reproduction number R0 ~ 2 - 3, potential for superspreading, 
high risk of global spread.
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Comparison to MERS, SARS and influenza
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Our analysis, while limited because of the scarcity of 
data, has two important strengths. Firstly, it is based 
on the simulation of a wide range of possibilities 
regarding epidemic parameters and allows for the full 
propagation on the final estimates of the many remain-
ing uncertainties regarding 2019-nCoV and the situa-
tion in Wuhan: on the actual size of the epidemic, on 
the size of the initial zoonotic event at the wet market, 
on the date(s) of the initial animal-to-human transmis-
sion event(s) and on the generation time interval. As 
it accounts for all these uncertainties, our analysis 
provides a summary of the current state of knowledge 
about the human-to-human transmissibility of 2019-
nCoV. Secondly, its focus on the possibility of super-
spreading events by using negative-binomial offspring 
distributions appears relevant in the context of emerg-
ing coronaviruses [7,8]. While our estimate of k remains 
imprecise, the simulations suggest that very low values 
of  k < 0.1 are less likely than higher values < 0.1 that 
correspond to a more homogeneous transmission 

pattern. However, values of  k  in the range of 0.1–0.2 
are still compatible with a small risk of occurrence of 
large superspreading events, especially impactful in 
hospital settings [15,16].

Conclusions
Our analysis suggests that the early pattern of human-
to-human transmission of 2019-nCoV is reminiscent of 
SARS-CoV emergence in 2002. International collabora-
tion and coordination will be crucial in order to con-
tain the spread of 2019-nCoV. At this stage, particular 
attention should be given to the prevention of possible 
rare but explosive superspreading events, while the 
establishment of sustained transmission chains from 
single cases cannot be ruled out. The previous experi-
ence with SARS-CoV has shown that established prac-
tices of infection control, such as early detection and 
isolation, contact tracing and the use of personal pro-
tective equipment, can stop such an epidemic. Given 
the existing uncertainty around the case fatality rate 

Figure 3
Proportion of simulated epidemics that lead to a cumulative incidence between 1,000 and 9,700 of the 2019 novel 
coronavirus outbreak, China, on 18 January 2020
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MERS: Middle East respiratory syndrome-related coronavirus; SARS: severe acute respiratory syndrome-related coronavirus.

This can be interpreted as the combinations of R0 and k values most compatible with the estimation of epidemic size before quarantine 
measures were put in place. As a comparison, we show the estimates of R0 and k for the early human-to-human transmission of SARS-CoV in 
Singapore and Beijing and of 1918 pandemic influenza [7,9,14].

Figure: Riou & Althaus (2020, Euro Surveill)
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The World Health Organization (WHO) declares the 
novel coronavirus outbreak a public health emergency 
of international concern (PHEIC) on 30 January 2020.



Source: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis
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Table 4. Suppression strategies for GB. Impact of three different policy option (case isolation + home quarantine + social distancing, school/university closure + case 
isolation + social distancing, and all four interventions) on the total number of deaths seen in a 2-year period (left panel) and peak demand for ICU beds (centre panel). 
Social distancing and school/university closure are triggered at a national level when weekly numbers of new COVID-19 cases diagnosed in ICUs exceed the thresholds 
listed under “On trigger” and are suspended when weekly ICU cases drop to 25% of that trigger value. Other policies are assumed to start in late March and remain in 
place. The right panel shows the proportion of time after policy start that social distancing is in place. Peak GB ICU surge capacity is approximately 5000 beds. Results are 
qualitatively similar for the US. 

  Total deaths  Peak ICU beds  Proportion of time with SD in place 

R0 
On 
Trigger 

Do 
nothing CI_HQ_SD PC_CI_SD PC_CI_HQ_SD  

Do 
nothing CI_HQ_SD PC_CI_SD PC_CI_HQ_SD  CI_HQ_SD PC_CI_SD PC_CI_HQ_SD 

2 

60 410,000 47,000 6,400 5,600  130,000 3,300 930 920  96% 69% 58% 
100 410,000 47,000 9,900 8,300  130,000 3,500 1,300 1,300  96% 67% 61% 
200 410,000 46,000 17,000 14,000  130,000 3,500 1,900 1,900  95% 66% 57% 
300 410,000 45,000 24,000 21,000  130,000 3,500 2,200 2,200  95% 64% 55% 
400 410,000 44,000 30,000 26,000  130,000 3,800 2,900 2,700  94% 63% 55% 

2.2 

60 460,000 62,000 9,700 6,900  160,000 7,600 1,200 1,100  96% 82% 70% 
100 460,000 61,000 13,000 10,000  160,000 7,700 1,600 1,600  96% 80% 66% 
200 460,000 64,000 23,000 17,000  160,000 7,700 2,600 2,300  89% 76% 64% 
300 460,000 65,000 32,000 26,000  160,000 7,300 3,500 3,000  89% 74% 64% 
400 460,000 68,000 39,000 31,000  160,000 7,300 3,700 3,400  82% 72% 62% 

2.4 

60 510,000 85,000 12,000 8,700  180,000 11,000 1,200 1,200  87% 89% 78% 
100 510,000 87,000 19,000 13,000  180,000 11,000 2,000 1,800  83% 88% 77% 
200 510,000 90,000 30,000 24,000  180,000 9,700 3,500 3,200  77% 82% 74% 
300 510,000 94,000 43,000 34,000  180,000 9,900 4,400 4,000  72% 81% 74% 
400 510,000 98,000 53,000 39,000  180,000 10,000 5,700 4,900  68% 81% 71% 

2.6 

60 550,000 110,000 20,000 12,000  230,000 15,000 1,500 1,400  68% 94% 85% 
100 550,000 110,000 26,000 16,000  230,000 16,000 1,900 1,800  67% 93% 84% 
200 550,000 120,000 39,000 30,000  230,000 16,000 3,600 3,400  62% 88% 83% 
300 550,000 120,000 56,000 40,000  230,000 17,000 5,500 4,700  59% 87% 80% 
400 550,000 120,000 71,000 48,000  230,000 17,000 7,100 5,600  56% 82% 76% 

Modeling scenarios

• Imperial College COVID-19 
Response Team (Report 9, 16 
March 2020) 

• CI: Case Isolation 
HQ: Voluntary home quarantine 
SD: Social distancing 
PC: Closure of schools and 
universities 

• UK reported deaths: ~ 130k 
UK excess mortality: ~ 110k

Table: https://www.imperial.ac.uk/mrc-global-
infectious-disease-analysis/covid-19/report-9-
impact-of-npis-on-covid-19/



Pandemic risk assessment

• WHO, 11 February 2020: “It can create havoc, politically, economically and 
socially. (…) That’s a window of opportunity so I'm reminding; there is time, the 
time is ticking and time is of the essence in this outbreak.” (Director-General) 

• Federal Department of Defence, Civil Protection and Sport (DDPS), 
3 February 2020: 
“Aus Sicht des Oberfeldarztes ist die Verbreitung des 2019-nCoV nicht zu 
verhindern, sondern allenfalls zu verzögern. (…) Schwere Fälle werden das 
Spitalwesen belasten.” (A. Stettbacher) 

• Federal Office of Public Health (FOPH), 24 February 2020: 
“Virus wird nicht so leicht übertragen wie Grippevirus, darum gute Aussichten, 
die Situation unter Kontrolle zu bringen.” (D. Koch)

14
Source: Tages-Anzeiger, 28 June 2021



How to prepare for the next pandemic?
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Identifying regions with ‘missing zoonoses’

16
Figure: Olival et al. (2017, Nature)
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validated by excluding mammals from zoogeographic areas, suggesting 
that there are location-specific factors that remain unexplained in our 
models (Methods; Supplementary Table 3).

Our best model to predict the number of zoonotic viruses per wild 
mammal species explained 82% of the deviance, and included phy-
logenetic distance from humans, the ratio of urban to rural human 
population across a species range, host order, whether or not a  species 
is hunted, disease-related research effort, and total viral richness 
(Extended Data Table 1). A large fraction of the deviance explained 
is driven by the observed total viral richness per host, supporting the 
biological assumption that the number of viruses that infect humans 
scales positively with the size of the potential ‘zoonotic pool’19 in each 
reservoir host. Removing this contribution by including observed total 
viral richness per host as an offset, the model explains 33% of the total 
deviance in the proportion of viruses that are zoonotic (Methods), with 
30% of total deviance explained by biological factors (Fig. 2f–i). Some 
mammalian orders had a significant positive (bats) or negative (two 
ungulate orders) effect on the proportion of zoonotic viruses (Fig. 2i).  
A number of previous studies have proposed that bats are special among 
mammals as reservoir hosts of a large number of recently emerging 
high-profile zoonoses (for example, SARS, Ebola virus, MERS)12,13,20. 
Our study tests this hypothesis in the context of all known mammalian 
viruses and hosts. While other mammalian orders have relatively high 
proportions of observed zoonoses and others have been poorly studied  
(Fig. 1a), our model results show that bats are host to a significantly 
higher proportion of zoonoses than all other mammalian orders after  
controlling for reporting effort and other predictor variables.

We found that the proportion of zoonotic viruses per species increases 
with host phylogenetic proximity to humans, and that this relationship 
is significant even when we removed ‘reverse zoonoses’ primarily asso-
ciated with transmission from humans to primates (Methods). This is 
the first time this relationship has been demonstrated using data for all 
mammals and specifically as a determinant of zoonotic spillover, and 
is supported by previous taxon-specific studies that have examined 
host relatedness and parasite/pathogen sharing in primates9,10, bats14 
and plants21. The proportion of zoonotic viruses shows some upward 
drift for mammals that are very phylogenetically distant from humans  
(Fig. 2g) that may represent an artefact of preferentially screening 
marsupials for human viruses. While primate species largely drive the 

phylogenetic effect, our best-fit model excluded the effect of the order 
Primates as a discrete variable (Fig. 2i), suggesting that continuous vari-
ation in phylogenetic distance across primate species is more important, 
and is significant even when all mammals are included. This finding 
highlights the need to uncover the mechanism by which phylogeny 
affects spillover risk, for example, evolutionarily related species sharing  
host cell receptors and viral binding affinities22,23 and specific viral 
mutations that may expand host range in related mammal species24.

We tested several measures to estimate human–wildlife contact at a 
global scale for the 721 wild mammals in our dataset, but only the ratio 
of urban to rural human population (all data model), the change in 
human population density, and the change in urban to rural  population 
ratio from 1970–2005 across a species range (stringent data model) 
were included (Extended Data Table 1). The response curve for urban 
to rural population suggests that increasing urbanization raises the 
risk of zoonotic spillover (Fig. 2h), as does increasing human popu-
lation density and the change in urban to rural population ratio over 
time. A single global metric of human–wildlife ecological contact did 
not emerge across models. However, the alternate inclusion of these 
related variables points to the importance of human–animal contact in 
defining per-species spillover risk globally, and the need for controlled 
field experiments and human behavioural risk studies to uncover the 
mechanisms underlying this risk. Overall, the strength of the effect 
of phylogenetic proximity was stronger than our proxies for animal–
human contact in predicting proportion of zoonoses (30–44% stronger 
explanatory factor), but both remained significant after controlling for 
research effort (Extended Data Table 1).

The predominance of zoonoses of wildlife origin in emerging 
 diseases has led to a series of programs to sample wildlife, discover 
novel viruses, and assess their zoonotic potential4,23,25,26. To inform 
their scale and scope we calculate the expected number of as-yet undis-
covered viruses and zoonoses per host species using our best-fit GAMs 
and a scenario of increased research effort (Methods, Supplementary 
Table 4). We then project these ‘missing viruses’ and ‘missing zoon-
oses’ geographically (Fig. 3, Extended Data Figs 3–8) to identify regions 
of the world where targeted, future surveillance to find new viruses 
and zoonoses will be most effective. In the process of translating our 
non-spatial, species-level predictions to geographic space, we identified 
several regions where our model predictions of the number of total 
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Figure 3 | Global distribution of the predicted number of ‘missing 
zoonoses’ by order. Warmer colours highlight areas predicted to be of 
greatest value for discovering novel zoonotic viruses. a, All wild mammals 
(n =  584 spp. included in the best-fit model). b, Carnivores (order 
Carnivora, n =  55). c, Even-toed ungulates (order Cetartiodactyla, n =  70). 

d, Bats (order Chiroptera, n =  157). e, Primates (order Primates, n =  73).  
f, Rodents (order Rodentia, n =  183). Hatched regions represent areas 
where model predictions deviate systematically for the assemblage of 
species in that grid cell (approximately 18 km ×  18 km, see Methods). 
Animal silhouettes from PhyloPic.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Early detection for 
early action

• Hospital surveillance systems 
(globally) 

• Further development of real-time 
modeling and disease 
monitoring systems 

• Systematic evaluation of short-
term forecasting systems 
(European Covid-19 Forecast 
Hub)

URL: https://covid19forecasthub.eu

https://covid19forecasthub.eu
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5th edition 2018

Swiss Influenza Pandemic Plan
Strategies and measures to prepare
for an influenza pandemic
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National pandemic 
plans

• Improve diagnostic capacities 

• Stockpiling of personal 
protective equipment, PPE (e.g., 
masks) 

• Early education of the general 
public on the disease and their 
role in preventing its spread 

• Test-Trace-Isolate-Quarantine 
(TTIQ) 

• Consider targeted use of NPIs 
(e.g., physical distancing)



Dialogue between politics and science
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Source: Tages-Anzeiger, 19 July 2021 



Bottom line

Make efficient use of available tools and ensure an 
all-of-government and all-of-society approach to limit the 

health, economic and societal impact of future pandemics.  

 
⇨ “Public Health”
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